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A global, or averaged, model for complex low-pressure argon discharge plasmas containing dust grains is
presented. The model consists of particle and power balance equations taking into account power loss on the
dust grains and the discharge wall. The electron energy distribution is determined by a Boltzmann equation.
The effects of the dust and the external conditions, such as the input power and neutral gas pressure, on the
electron energy distribution, the electron temperature, the electron and ion number densities, and the dust
charge are investigated. It is found that the dust subsystem can strongly affect the stationary state of the
discharge by dynamically modifying the electron energy distribution, the electron temperature, the creation and
loss of the plasma particles, as well as the power deposition. In particular, the power loss to the dust grains can
take up a significant portion of the input power, often even exceeding the loss to the wall.
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I. INTRODUCTION

Low-pressure plasmas are widely used in the semiconduc-
tor, optical, and other modern industries for the fabrication of
microelectronic, optoelectronic, and photonic devices, for
plasma enhanced chemical vapor deposition(PECVD) of
multilayered functional coatings, etc., as well as for environ-
mental remediation[1–4] and nanostructured materials
manufacturing[1,5]. The plasmas are complex multicompo-
nent systems containing electrons, ions, neutrals, and
charged “dust” grains of much larger size, charge, and mass.
The dust grains can be either desired working material or
unwanted pollutants. They are usually produced by plasma-
surface interaction or by clustering and agglomeration of
molecules generated by chemical reactions within the plasma
[1]. The grains are typically tens of nm to tens ofmm in size
and their density can be as high as 108 cm−3 in low-pressure
rf plasmas, and they are usually in a colloidal state within the
plasma.

Plasma-grown nanoclusters and fine powder particles can
dramatically affect the discharge characteristics and the
deposition process. Existing results show a direct link be-
tween the density and charge of the dust grains, as well as
the electron temperature of the bulk plasma, to the quality of
the PECVD fabricated films[1,6–11]. For example, in the
PECVD of amorphous silicon, device-grade films can be

produced under low grain density and low electron tempera-
ture conditions[12]. Growth, but without agglomeration, of
clusters and crystallites is also often desired[7–9,13]. On the
other hand, self-organization of nanoclusters and nanopar-
ticles into ordered or disordered building blocks is crucial for
the fabrication of exotic objects, such as the cluster-
assembled carbon nanofoam with unusual semiconducting
and ferromagnetic properties[14]. Thus, efficient manage-
ment of the grain size and density[15] is crucial in plasma-
assisted deposition of advanced nano-materials and biomate-
rials [13,16–18]. Recently, the evolution and stationary states
of dusty plasma systems have been investigated. These in-
clude the dust transport and stability phenomena[19–21] as
well as dust origin and growth[1,22–24].

Existing theoretical approaches to dusty plasma dis-
charges are mostly limited to relatively low ion densitysni

ø109 cm−3d rf capacitively coupled plasmas(CCPs) that
have been widely used in the semiconductor industry and in
the laboratory. Recently, for industrial use the CCPs have
gradually been replaced by the higher density inductively
coupled plasmas(ICPs) [25,26] and microwave plasmas
[27]. These plasmas are characterized by higher densities
(ni *1010 cm−3 in the high density discharges) and lower
sheath potentials than that of CCPs. Methods for dust control
developed for CCPs[1] are often not applicable to ICPs and
microwave plasmas. In fact, the physics of high-density
dusty plasmas is still not well understood.

For analysis of pristine(dust-free) ICPs, fluid [28–30],
local and nonlocal kinetic approaches[31,32], as well as
particle-in-cell (PIC) simulation [33,34], have been used.
Spatially averaged, or global, models have been shown to be
useful in understanding ICPs[35]. Such global models allow
one to obtain plasma parameters averaged over the bulk vol-
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ume of the plasma, and analyze the energy loss in particle
collisions as well as to the walls. They are much simpler than
the more elaborate local models and simulations[36] and
thus do not require much computational resource. Neverthe-
less, the key plasma parameters can be deduced from the
relatively simple conservation equations of the global
models[35].

In this paper we present a self-consistent global model for
argon discharges containing dust grains. The model consists
of particle and power balance equations for the averaged
electron and ion densities, electron temperature, and power
loss in the discharge. In contrast to most earlier models of
dust-containing discharges[1,2,22,23,37], power loss to the
dust grains is also included. The average dust charge is cal-
culated using the conventional orbit motion limited(OML)
approach. In existing global models the electron energy dis-
tribution function(EDF) is usually assumed to be Maxwell-
ian. However, the electrons are very often far from equilib-
rium. Here, we generalize our earlier model for complex
plasma discharge[2,15,19,20,37] by self-consistently solving
for the EDF from the electron Boltzmann equation.

Accordingly, we shall solve the particle and power bal-
ance equations, the electron Boltzmann equation including
the major sources and sinks, together with the boundary con-
ditions for the ICP. Our aim is to investigate the effects of the
dust grains and external discharge parameters, such as the
input power and operating pressure, on the discharge charac-
teristics, such as the EDF, the electron and ion densities, the
dust charge, etc. Power loss in the complex plasma system is
included in detail. The calculations are carried out for dis-
charge conditions typical of laboratory ICPs and microwave
plasmas. Thus, our results can be used to improve the design
and management of the deposition processes. Because of the
simplicity of the model, the computation time is much
shorter. The present global model is thus especially useful for
online diagnostics and feedback control of the discharge it-
self as well as of the processing.

II. THEORETICAL MODEL

A. Main assumptions

We consider an rf or microwave low-pressure argon dis-
charge of radiusR and of lengthL containing dust grains.
The discharge is maintained by an electric fieldEstd
,expsivtd, where v=2pfE. The frequencies fE

=13.56 MHz and fE=2.45 GHz shall be considered. The
plasma is composed of electrons, singly charged positive
ions Ar+, and negatively charged colloidal dust grains. We
assume that the dust grains are all of the same size and are
uniformly distributed in the plasma column, except in a dust-
free boundary layer of thicknessl near the wall. This profile
of the dust density is typical in dust-growth experiments us-
ing argon-silane mixtures[38] and appears when the dust
grains are created in the silane-argon mixture and trapped in
the argon discharge[39]. We also assume thattd@teq, where
td and teq are the characteristic time scales of dust grain
motion and establishment of equilibrium, respectively.
Therefore, the massive dust grains can be treated as immo-
bile. It is also assumed thatlD@ad andd@lD, wherelD is

the Debye length,ad the dust grain radius,d=nd
−1/3 the dis-

tance between the dust grains, andnd the dust density.
The dust shielding potential is given by[1]

fsrd = fs
ad

r
expS−

r − ad

lD
D , s1d

where lD
−2=4pesne/Te+ni /2E0d, fs is the dust surface po-

tential, ni the ion density in the dusty region,E0
s=0.06 eVd andTe the average ion energy and electron tem-
perature(in eV), ande the elementary charge. Daughertyet
al. [40] showed that except for very large dust grains, Eq.(1)
is very close to that from the numerical solutions of the cor-
responding nonlinear Debye-Hückel theory, and that it is a
good approximation foradø1 mm. Kennedy and Allen[41]
recently studied the electrostatic potential around a small
(ad/lDe,10−3, wherelDe is the electron Debye length) dust
grain using a generalized OML theory. They found that no-
ticeable deviation from Eq.(1) appears only at large dis-
tances from the grain.

B. Electron kinetic equation

In an electric fieldE, the electron velocity distribution
function fsr ,v ,td, wherer andv are coordinate and velocity
of the electrons andt is the time, satisfies the well-known
Boltzmann equation[42,43]

] f

] t
+ =r · svfd − =v ·SeE

me
fD = Sdf

dt
D

c
, s2d

wheresdf /dtdc is the time rate of changef due to collisions,
andme is the electron mass. The electron densityne is given
by nesr ,td=efd3y. The total electric field E=Es

+Ep expsivtd consists of a space-charge fieldEs and an ex-
ternal RF fieldEp at frequencyv.

Traditionally, for systems not too far from equilibrium,
Eq. (2) is solved by expanding the EDF in spherical harmon-
ics together with Fourier analysis in time[42,43]. That is,
one writes

f = o
l
o

p

Fp
l Plscosudexpsipvtd, s3d

wherePl is the Legendre polynomial of orderl andu is the
polar angle. Neglecting terms beyond the first order(i.e., in
the Lorentz approximation), we have fsr ,v ,td= f0sr ,y ,td
+sv /yd ·f1sr ,y ,td, where the isotropic partf0 describes the
energy distribution of random motion, while the anisotropic
part f1 describes the directed motion in the electric field. The
Lorentz approximation is valid when there is sufficiently
large number of elastic collisions[44], so that the distribu-
tion is almost isotropicsf0@ f1d. It is valid for electrons in
the elastic(energies below the excitation thresholds) as well
as inelastic(energies above the excitation thresholds) re-
gimes [31], and is widely used for studying low-pressure
discharges and collisional plasmas in general(see, e.g., Refs.
[31,32] and the references therein). The EDFs of the low-
energy electrons are usually isotropic, provided that the dis-
charge dimension is larger than the electron mean free path.
On the other hand, due to a large difference in the cross
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sections of elastic and inelastic collisions and the much
smaller number density of the high-energy electrons, electron
momentum relaxation occurs much faster than that of energy,
so that the EDF in the high-energy inelastic-collision regime
is also nearly isotropic[31,32].

We also assume thatf0 is time independent, which is valid
if [45,46]

v . ne = s2me/midnm + n* , s4d

wheren* is the total inelastic collision frequency,mi is the
ion mass, andnm is the collision frequency for momentum
transfer. The field variation in most stable discharges is usu-
ally much faster than that of energy relaxation, so that their
temporal effects average out in the isotropic part of the EDF
and the condition(4) is satisfied.

When the plasma size and neutral pressure are sufficiently
high, the inequalityp0L.100 m Torr cm[44], wherep0 is
neutral pressure in mTorr andL is the size of the discharge in
cm, has to be satisfied. Furthermore, when the electron den-
sity is sufficiently high(lDe!L, such as in quasineutral dis-
charges), the spatial derivative term in Eq.(2) and the space-
charge electric fieldEs can be safely neglected[47]. It is then
convenient to separate the variables and rewritef0sr ,vd as

f0 = nesr dFsvd, s5d

wheree0
` Fsvd4pv2 dv=1, and to change the variable from

velocity to energys«=mev2/2ed. Accordingly, we introduce
the electron energy distributionF0s«d by the relation
Fsvd4pv2 dv=F0s«dÎ«d«.

Further assuming that superelastic collisions between
electrons and atoms, as well as excitation from low to high
atomic states, are negligible, from the Boltzmann equation
one obtains[43,48]

−
2e

3me

d

d«
S «3/2

nms«d
Eeff

2 s«d
dF0

d«
D = SeasF0d + SeesF0d + SedsF0d,

s6d

where Eeff=Epnms«d / f2snm
2 s«d+v2dg1/2. Here SeasF0d,

SedsF0d, SeesF0d describe the electron-atom, electron-dust,
and electron-electron collisions, respectively.

The electron-atom collision termSeasF0d has several com-
ponents. The contribution of elastic collisions is

Sea
e sF0d =

d

d«
F2me

mi
«3/2nms«dSF0 + Tg

dF0

d«
DG , s7d

where Tg=0.026 eV s,300 Kd is the neutral gas tempera-
ture. Collision-induced atomic excitations are represented by

Sea
excsF0d = o

k

fnea
k s« + VkdF0s« + Vkds« + Vkd1/2

− nea
k s«dF0s«d«1/2g, s8d

wherenea
k is the collision frequency of thekth inelastic pro-

cess with a threshold energyVk. Ionization is treated as a
normal excitation process[49].

Electron-dust interaction includes scattering of the elec-
trons from the shielding potential around the dust, as well as
electron loss due to their deposition on the dust grains. The

electron-dust collision term can be modeled by[50]

SedsF0d =
d

d«
F2me

md
«3/2ned

e SF0 + Td
dF0

d«
DG − ned

c F0«1/2,

s9d

wherened
e s«d andned

c s«d are the momentum transfer and the
electron absorption frequencies of electron-dust collisions,
respectively, andmd andTd are the mass and temperature of
the dusts. We shall setTd=0.026 eV, md= 4

3rdpad
3, where

rd=2 g/cm3 is the grain material density[1].
The electron-electron collision termSeesF0d is given by

SeesF0d =
d

d«
F2«3/2neeSF0G + H

dF0

d«
DG , s10d

with

Hs«d =
2

3SE0

«

«3/2F0s«dd« + «3/2E
«

`

F0s«dd«D ,

and Gs«d=e0
« «1/2F0s«dd«, where nees«d

=4pse2/med2ne ln L /v3, ln L is the Coulomb logarithm
[48], and Te=s2/3de0

` F0s«d«3/2d« is the electron tempera-
ture.

For a given EDFF0s«d, the electron current collected by a
dust particle in the OML approximation is[51]

Ie = − pad
2eneE

−fs

` S1 +
fs

«
DÎ2e«

me
F0s«dÎ«d«. s11d

The ion current on a dust grain is Ref.[52] I i

=pad
2eni

Î2eE0/mis1−fs/E0d, where the dust surface poten-
tial fs is related to the dust chargeeZd by fs=eZd/ad. The
model assumes that the electron and ion grain currents bal-
ance, or

Ie + I i = 0, s12d

and that the quasineutrality condition

ne + nduZdu = ni s13d

is satisfied.

C. Collision cross sections

The electron-neutral and electron-dust collision frequen-
cies appearing in Sec. II B can be obtained by multiplying
the electron-neutral and electron-dust cross sections by
ng

Î2e« /me, whereng is Ar atom density, andnd
Î2e« /me,

respectively. We shall consider the same set of cross sections
for electron-neutral collisions as in Ref.[53] (see Fig. 1
there). From Ref. [54] we obtain the electron-neutral
momentum-transfer cross sectionsm, which agrees well with
that obtained experimentally by Ramsauer and Kollath[55]
and the one given by O’Malley[56]. The cross section takes
into account the characteristic Ramsauer-Townsend drop in
sm in the low-energy regime. We also use the Ar ionization
cross section taken from the experiments of Rapp and
Englander-Golden[57]. For describing the excitation pro-
cesses in the dusty Ar plasma we consider the 4s
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s3P0,3P2,1P1,3P1d, 4p, and 5s excitations. Their cross sec-
tions from Refs.[53,58] are in good agreement with that
obtained experimentally by Chutjian and Cartwright[59],
Borst [60], and McConkey and Donaldson[61].

For the electron-dust interaction potential(1), the
electron-dust momentum transfer cross-section can be writ-
ten as[50]

sed
e s«d = pad

2s− fs/«d2e2ad/lD ln L, s14d

where L.−lDTe/adfs. In the OML approximation, the
cross section of electron collection by a dust grain is
sed

c s«d=pad
2s1+fs/«d for «ù−fs and 0 for«,−fs.

D. Particle and power balance

To obtainnesr d in (5), or the averaged electron density, it
is necessary to consider the overall particle and power bal-
ance in the discharge. The balance equation for the ions(here
Ar+) can be written as

KiznengV − KidndniVd − nisuBiS= 0, s15d

whereuBi is the velocity of the ion/electron ambipolar flow
at the bulk plasma-sheath interface,V and Vd are the total
plasma volume and the volume of the dusty plasma, respec-
tively, S is the surface area of the chamber wall,Kid is the
rate coefficient for ion-dust collisionssKidni = I i /ed, Kiz

=enea
i s«dF0s«dÎ«d« /ng is the ionization rate coefficient, and

nis is the ion density at the bulk plasma-sheath boundary. For
a stable sheath, the plasma flowuBi is near the Bohm speed
[3,62]. For the Maxwellian EDF fF0

max=s2/ÎpdTe
−3/2

exps−« /Tedg, the Bohm speed isÎeTe/mi [3,63]. For non-
Maxwellian EDF, the expression for the ion drift velocity at
plasma-sheath interface is given by Ref.[64] uBi

<Îs2e/midseF0s«d«−1/2d«d−1/2.
As mentioned in Sec. II A, a near-wall region of thickness

l (for definitiveness we setl =0.5 cm in our calculations) is
free from dust grains. Thus, the ions and electrons in these
regions behave as in the pristine plasma. The boundary ion
density isnis=neb cossÎKizng/Dsld, whereneb is electron(or
ion) density at a distancel from the boundary. Here,Ds
=Da/ s1+2Kizng/nind is an effective diffusion coefficient
[53,65], where Da=sDemi +Dimed / smi +med, Di =eE0/minin,
mi =e/minin,

De =
2e

3me
E «3/2

nms«d
F0s«dd«,

me = −
2e

3me
E «3/2

nms«d
dF0s«d

d«
d«,

andnin is the ion-neutral collision frequency. We note thatDa
is the well-known ambipolar diffusion coefficient,De andDi
are the electron and ion diffusion coefficients,me andmi are
the electron/ion mobilities, respectively. Since a dusty
plasma is similar to an electronegative discharge, the elec-
tron density in the dust-containing region is practically space
independent[39], so thatneb,ne.

Power balance in the discharge can be described by

Pin = Pea+ Pw + Pdust, s16d

where Pin is the total power absorbed by the discharge(in
our modelPin is an input parameter), Pea is the energy loss
via electron-neutral collisions, andPw andPdust is the power
loss in the form of kinetic energy loss through collisions of
the plasma species with the walls and dusts, respectively.
The power loss via electron-neutral collisions is[35]

Pea= eneVSKizngVi + o
k=1

Nexc

ngKexc
k Vk

+
2me

mi
E

0

`

nms«dF0s«d«3/2 d«D , s17d

whereKexc
k =enea

k s«dF0s«dÎ«d« /ng is the excitation rate coef-
ficient of the kth inelastic process.Nexc is the number of
excitation processes. The last term in(17) is the energy loss
due to electron-neutral elastic scattering.

The power loss at the wall isPw=enisuBiSs«e+«id, where
«e and«i are the mean electron and ion kinetic energies loss
(per electron and ion) at the wall, respectively. The mean
kinetic energy loss per lost electron is given by the ratio of
the average energy flux to the electron flux[66,3]. For an
arbitrary electron distribution functionF0 the average kinetic
energy per electron lost is given by

«e =
E «2F0s«dd«

E «F0s«dd«

,

so that for a Maxwellian EDF the mean electron energy loss
per lost electron is«e=2Te. On the other hand, the mean
kinetic energy loss per lost ion is the sum of the ion energy
entering the sheath and the energy gained by the ion as it
traverses the sheath, or«i =miuBi

2 /2e−Fw, whereFw is the
(negative) wall potential with respect to the sheath-bulk
plasma edge.

To determine the potentialFw, we equate the ion flux[3]
Gi =nisuBi, assumed to be constant across the thin sheath, to
the electron flux at the wall,

Ge =
1

4
niskuelexpSFw

Te
D ,

wherekuel=eÎ2e« /meF0s«dÎ«d« is the mean electron speed,
and the electrons are near equilibrium. SinceGi =Ge, we ob-
tain Fw=Te lns4uBi / kueld for the wall potential. For Max-
wellian EDF, we havemiuBi

2 /2=eTe/2 and Fw,−4.7Te.
Thus, the ions bombard the wall with an energy«i ,5.2Te
[3].

Electrons with energy less than −fs will reflect elastically
from a dust grain and re-enter the plasma without altering
their energy. An electron with energy higher than −fs will
transit through the grain sheath and deposit on the grain sur-
face, together with the leftover energy. The energy lost in the
sheath goes into the maintenance of the potential drop in the
sheath, and is in turn transferred to the grain by the positive
ions accelerated by the sheath potential.
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The heat flux associated with the electron current on a
dust grain Eq.(11) is

qed= pad
2neE

−fs

` S1 +
fs

«
DÎ2e«

me
F0«3/2 d«, s18d

so that the power loss to the dust grains in the plasma vol-
ume due to the electron heat flux is

Pdust= eqedndVd. s19d

An ion entering the grain sheath has average energyE0,
which is much smaller than that of the electrons. Thus,Pdust
as given by Eq.(19) should be a good approximation for the
total power lost by the plasma particles to the dust grains.

III. NUMERICAL RESULTS

Equations.(6), (12), (13), (15), and (16) are solved nu-
merically. We are interested in the effects of dust sizead and
densitynd, as well as external parameters such as the input
power Pin and neutral gas pressurep0, on the EDFF0, the
electron and ion densities, the electric fieldEp sustaining the
plasma, and the dust chargeeZd. The calculations are for
conditions typical in ICPs[30], microwave plasmas[27], and
the dust growth experiments[1].

A. Effect of dust density

In Fig. 1(a), the EDFs in a pristine and a dusty plasma are
presented. The latter is obtained self-consistently from Eqs.
(6), (12), (13), (15), and(16). For the pristine case the EDF
is calculated from Eqs.(6), (15), and (16) by omitting the
dust related terms. We see that there are significant differ-
ences in the EDFs. In the low-energy and high-energy re-
gimes the number of electrons in the dusty plasma is higher
than that in the pristine one, but the opposite occurs in the
mid-energy regime. This difference is due to electron-dust
collisions [67].

Note, that in the pristine plasma the EDF is close to
Druyvesteyn distribution[68], which because of nonelastic
electron-neutral collisions has more electrons at average en-
ergy and fewer electrons at high energy than the Maxwellian
distribution. The Druyvesteyn distribution has often been ob-
served in dc as well as 13.56 MHz rf discharges at low elec-
tron densities(neø1011 cm−3 at 100 mTorr) and relatively
high electron-neutral collision ratessnm.vd [69].

In Fig. 1(b) the effect of dust density on the EDF is
shown. One can see that increase ofnd is accompanied by
increase of electrons in the low-energys«,2.5 eVd as well
as the high-energys«ù13 eVd regimes, but a decrease in the
midenergy«=4–10 eVregime. This behavior can be attrib-
uted to momentum transfer via electron-dust collisions[67].
Indeed, sincened

e ,nd, the electron-dust momentum transfer
frequencyned

e increases withnd. The relative number of low-
energy electrons in turn increases. The effect is similar to
that of electron-electron collisions on the EDF: increase ofne
leads to increase ofnee, and the distribution evolves towards
Maxwellian[63]. The decrease of the EDF in the range 4–10
and the increase in the low-energy ranges«,2.5 eVd can

also be attributed to the Maxwellization, or randomization,
of the EDF via electron-dust collisions. This Maxwellization
of the EDF with increasing dust density also changes the
electron temperature. In fact, we haveTe=4.3, 4.16, and
4.14 eV fornd=106, 23107, and 53107 cm−3, respectively.

The increase of electrons in the tail of the EDF is caused
by an increase(with nd) of the electric fieldEp sustaining the
plasma. We haveEp=335, 352, and 437 V/m fornd
=106,23107, and 53107 cm−3, respectively.Ep increases
self-consistently because with an increase ofnd, the number
of electrons and ions lost to the dusts(governed by
KidndniVd) also increases[see Fig. 2(a)], so that the total
ionization (given by KiznengV) in the plasma volume must
also increase in order to sustain the balance between the
generation and recombination(on the dust grains and wall)
of the plasma particles. It is of interest to note that plasma
particle loss at the discharge wall decreases asnd increases,
and at highnd s,53107 cm−3d it is even negligible com-
pared to that to the dusts[see Fig. 2(a)]. Since nis

,cosslÎKizng/Dsd, the decrease of total ion fluxsnisuBiSd at
the wall can be attributed to a decrease of the boundary ion
densitynis with nd. The latter decrease is due to enhanced

FIG. 1. (a) The EDFs in pristine argon plasma and dust-
containing argon discharge atfE=13.56 MHz,p0=100 mTorr,Pin

=100 W,R=L=10 cm,ad=100 nm, andnd=53107 cm−3. (b) The
EDFs in a dust-containing argon discharge for different dust densi-
ties, nd=106, 23107, and 53107 cm−3. The other parameters are
the same as in(a).
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ionization [or Kizng, see Fig. 2(a)] with increasingnd.
With increase ofnd the total dust surface collecting elec-

trons and ions is enhanced. Therefore the dust chargenduZdu
per unit plasma volume also increases, as shown in Fig. 2(b).

To maintain plasma quasineutrality, the ion density rises with
nd and the electron density decreases slightly[see Fig. 2(c)].

Overall power balance in the discharge also depends on
the dust density. The power deposited on the dust grains
increases with the total dust surface area in the plasma. The
power loss at the wall decreases becausenis decreases with
nd increase[see Fig. 2(c)]. At low dust densities about 20%
of the power absorbed in the discharge is carried by the
electrons and ions to discharge wall[Fig. 2(c)]. At high dust
densities the energy loss to the wall is negligible in compari-
son to that via electron-neutral and electron-dust collisions.
In fact, the energy loss to the dust grains is quite highs
,0.2Pind at high dust densities. Energy absorption by dust
grains may lead to heating/excitation of the latter[1,22].

B. Effect of dust size

The effect of dust size on the discharge properties is
somewhat similar to that of the dust density. In particular,
with increase ofad the electron-dust collision frequency is
enhanced. Comparing the EDFs forad=50 nm and ad
=150 nm in Fig. 3(a), one can see that the number of elec-
trons in the low-energy regimes«,2.5 eVd is increased
while that in the 3–10 eV regime is decreased. The increase
of electron and ion loss to the grains is balanced by enhanced
ionization from the increase ofEp. For example, we find
Ep=365, 521, and 821 V/m forad=100, 150, and 200 nm,
respectively. The rise of the rf electric field is accompanied
by an increase of high-energy electrons in the tail of the
EDF. As expected, for larger dusts, an increase of the high-
energy electrons is accompanied by a decrease of electrons
with «,10 eV [see Fig. 3(a) for ad=150 and 200 nm]. This
Maxwellization of the EDF causesTe to decrease withad
increase at small dust sizes and/or densities. For large dust
size and/or density, because of the high electric field needed
to sustain the plasma, one finds thatTe increases withad. In
fact, Te=4.28, 4.1, 4.24, and 4.66 eV forad=50, 100, 150,
and 200 nm, respectively.

Analogously to increasingnd, increasing the total grain
surface area collecting electrons and ions leads to increase of
the grain charge densitynduZdu. The ion densityni increases
for adø125 nm and decreases for largerad. The electron
density is practically constant atadø100 nm but decreases
for higher dust radii[see Fig. 3(b)]. The decrease ofni andne
with ad increase is due to intensification of electron and ion
collection by the dusty grains. The power absorbed in
electron-atom collisions increases slightly withad [Fig. 3(c)]
for adø100 nm because of the increase of high-energy elec-
trons [Fig. 3(a)] at practically constantne [see Fig. 3(b)]. At
larger dust radii it decreases because of the decrease inne.
Furthermore, with increase of the dust size,Pdust increases
andPw decreases.

C. Effect of pressure

Similar to the pristine case, in a dusty plasma the electron
and ion mean free paths increase as the pressure decreases.
As a result, diffusion loss of the plasma particles to the wall
is enhanced. To compensate for this loss, ionization in the

FIG. 2. (a) The ratesKiznengVd of ion generation in the dis-
charge. The rate of ion losssnisuBiSd to the discharge wall. The rate
sKidndniVdd of ion loss to the dust grains.(b) Electron and ion
densities, andundZdu. (c) Pea, Pw, andPdust as a function of the dust
densitynd. The other parameters are the same as in Fig. 1.
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plasma volume increases via increase of the high energy
electrons in the tail of the EDF[see Fig. 4(a)]. However, the
electron, ion, and dust-charge densities still decrease[see
Fig. 4(b)]. With pressure rise, the number of low energy
electrons s«,2.5 eVd decreases and electrons in the
5–12 eV range increases[Fig. 4(a)]. This EDF behavior in

the low-energy range may be associated with electron-
electron collisions that Maxwellizes the EDF. Thep0 depen-
dence of the EDF affectsTe, which increases slowly withp0.
We find Te=3.68, 3.92, and 4.11 eV forp0=25, 50, and
125 mTorr, respectively.

FIG. 3. The EDFs(a) for different dust radii,ad=50, 150, and
200 nm atnd=33107 cm−3. (b) Electron and ion densities, and
undZdu. (c) Pea, Pw, andPdustas a function of the dust radiusad. The
other conditions are the same as in Fig. 1.

FIG. 4. The EDFs(a) at different neutral gas pressures,p0=25,
50, and 125 mTorr atad=100 nm andnd=33107 cm−3. Electron
and ion densities, andundZdu in (b); and Pea, Pw, Pdust in (c) in
dependence on gas pressurep0. The other conditions are the same
as in Fig. 3.
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Neutral gas pressure can also affect the power balance.
Figure 4(c) shows thep0 dependence of the power lossPea
via electron-neutral collisions, the powerPdust absorbed by
the dust grains, and the power lossPw at the discharge wall.
One can see that the neutral gas density, thus alsoPea, in-
creases withp0. The power loss to the dusts and wall de-
creases with pressure, as can be attributed to the decrease in
the plasma particle densities, especially the number of the
high energy electrons.

D. Effect of input power

In Fig. 5(a) the EDFs for different input powersPin are
shown. One can see that the number of electrons in the high-
energy tail of the EDF increases as power decreases. This
behavior can be attributed to the enhanced effect of the dusts
on the internal discharge parameters at low input powers.
Since with decrease ofPin at fixed dust density the electron
and ion densities decrease[Fig. 5(b)], the number of dust
grains per electron increases. Therefore, the relative electron
loss on the dust grains increases asPin decreases. To com-
pensate this additional loss, ionization in the discharge is
increased via an enhancement of the high-energy tail of the
EDF, and thus alsoTe. For example, one findsTe=4.21, 4.09,
3.87, and 3.8 eV atPin=50, 100, 200, and 400 W, respec-
tively. Consistent with the increase of the number of high-
energy electrons, the electric field intensityEp also increases
with the power drop. We found thatEp=392, 365, 311, and
295 V/m atPin=50, 100, 200, and 400 W, respectively. Fig-
ure 5(b) also shows that the dusty charge densitynduZdu in-
creases only slightly withPin.

It should be pointed out that for pristine plasmas,Te also
decreases as the input power increases. When the input
power is low, electron-electron collisions are rare, and the
electron EDF in typical rf discharges is usually Druyvesteyn
type. However, whenPin increases the electron density also
increases, and the enhanced electron-electron collisions tend
to Maxwellize the EDF[70]. In general, theTe correspond-
ing to a Druyvesteyn type EDF is higher than that for the
corresponding Maxwellian EDF[66].

For a pristine plasma at external conditions corresponding
to Fig. 5(a), one finds thatTe=3.92, 3.86, 3.76, and 3.55 eV,
andEp=182, 176, 165, and 148 V/m forPin=50, 100, 200,
and 400 W, respectively. We see that in the presence of
dusts,Ep is higher than that in the pristine plasma. This oc-
curs because the electron loss in dust containing plasmas is
higher. Indeed, as can be seen in Fig. 1(a), the number of
high-energy electrons andEp are both higher than that in the
pristine case. Electron-impact ionization is thereby also en-
hanced. It should also be noted that whenPin varies from 50
to 200 W, the changes inTe and Ep are much more pro-
nounced than that in the pristine plasma. This behavior can
be attributed to the enhanced role of electron-dust collisions
at low input powers.

Figure 5(c) shows that the ratiosPea/Pin and Pdust/Pin
both decrease with power. The former is associated with a
decrease of high energy electrons in the EDF, leading to a
decrease(with Pin) of the energy loss in electron-neutral col-

lisions. On the other hand, the decrease ofPdust/Pin is asso-
ciated with a decrease of the numbernd/ne of dust grains per
electron at fixed dust density. BecausePea/Pin andPdust/Pin
both decrease the energy absorption by the discharge wall is
enhanced.

FIG. 5. (a) The EDFs for different input powers,Pin=50, 200,
and 1000 W atp0=100 mTorr.(b) Electron and ion densities, and
nduZdu. (c) Pea/Pin, Pw/Pin, Pdust/Pin versusPin. The other param-
eters are the same as in Fig. 4.
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IV. MICROWAVE DISCHARGE

We now consider dusty microwave discharges driven at
fE=2.45 GHz. The calculated EDFs atnd=53106, 33107,
and 53107 cm−3 are shown in Fig. 6(a). In contrast to that of
the ICPs driven at lower frequencies, the EDFs in the dusty
microwave plasma as well as in a high-frequency pristine
discharge[63] are close to Maxwellian. Dust grains only
slightly affect the profile of the EDF. With increase of dust
density the number of high energy electrons in the tail of the
EDF increases, leading to increased ionization which in turn
balances the enhanced electron loss on the dust grains. This
self-consistent process is similar to that occurring in rf ICPs
discussed in Sec. III A. The enhancement of the EDF tail is
due to an increase ofEp: we haveEp=6245, 7399, and
8239 V/m for nd=53106, 33107, and 53107 cm−3, re-
spectively. Like in rf driven plasmas, low-energy
s«,2.5 eVd electrons increase withnd, but the number of
electrons in the 5 eV,«,15 eV range is reduced. As a
result, asnd increases,Te decreases. For example, one finds
thatTe=2.55, 2.24, and 2.14 eV fornd=53106, 33107, and
53107 cm−3, respectively.

Because of the increase of electrons on the dust grains,
the (negative) dust charge per unit plasma volume increases
with nd. One findsnduZdu=2.563109, 1.4431010, and 2.35
31010 cm−3 for nd=53106, 33107, and 53107 cm−3, re-
spectively. Also similar to an rf discharge, the power loss to
the dust grains increases and that to the wall decreases with
nd. For example, one hasPdust=14.1, 83, and 128 W,Pw
=201, 120, and 74 W fornd=53106, 33107, and 5
3107 cm−3, respectively.

The effect of dust radius on the EDF is also similar to that
of the dust density. In Fig. 6(b) the EDFs for different dust
radii are shown. In particular, with increase ofad, the number
of electrons with«ø2.5 eV and«ù18 eV in the EDF are
enhanced, but in the mid-energy ranges5 eVø«ø16 eVd it
is reduced.

V. DISCUSSION

In this section we discuss the results in a more unified
manner. First, the characteristics of dusty ICPs and micro-
wave plasmas can be managed by controlling certain exter-
nal parameters. In particular, by increasing the input power
one can raise the electron and ion densities as well as the
averaged dust charge. The electron temperature then drops
slightly because of a decrease of the relative dust density
with respect to the electron and ion densities. On the other
hand, the electron and ion densities, together with the aver-
aged dust charge, decrease with the plasma pressure. This
can be attributed to a decrease of high energy electrons, as-
sociated with a decrease of the ionization level withp0.

The plasma properties also depend strongly on the dust
density or size. With increase of the former, the EDF is en-
hanced in the low-energy regime and decreases in the miden-
ergy regime, accompanied by decrease ofTe. Our results
show that whennd or ad increase, the electric field sustaining
the plasma also increases. This behavior is in a good agree-
ment with the results of earlier studies[50,67]. In particular,
using a hybrid fluid model with Monte Carlo and molecular
dynamics simulations McCaugney and Kushner[67] re-
ported that at fixed electric field,Te decreases with the dust
density. Taking into account the diffusion of electrons to the
plasma boundaries it was also shown[67] that the electric
field sustaining the plasma increases withnd, which is in a
remarkable agreement with the results of Secs. III A and
III B. On the other hand, ifEp does not change much(one of
the limiting cases in Refs.[67,50]), Te either decreases or
remains fairly constant whennd or ad become larger(as dem-
onstrated in Secs. III A, III B, and IV).

We have also shown that with an increase ofnd or ad, the
number of high energy particles in the EDF increases. This
agrees well with the experiments of Tachibanaet al. [71],
where the EDFs were measured in a parallel-plate dusty rf
argon discharge. In particular, it was found[71] that the
number of electrons in the tail of the EDF is higher, and the
EDF is closer to the Maxwellian EDF, as compared to the
pristine plasma case. This elevated population of higher-
energy electrons have also been observed in the dust void
experiments[72,73].

In fact, with increase ofnd or ad the electron loss in the
plasma also increases. This loss is compensated by an en-

FIG. 6. (a) The EDFs for different dust densities,nd=53106,
33107, and 53107 cm−3 at ad=100 nm .(b) The same as in(a) for
different dust radii,ad=50, 100, and 200 nm atnd=107 cm−3. Here
R=L=10 cm, p0=100 mTorr, Pin=1 kW, and the generator fre-
quencyfE=2.45 GHz.
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hancement of the ionization level associated with the in-
crease of the high-energy electrons in the EDF tail. To com-
plete the picture of the dynamic self-consistent process, we
note that with increase ofnd or ad, the dust-charge density
also increases. To maintain the overall plasma neutrality the
ion densityni also increases comparing with that at lownd or
ad. As a result of a balance between ionization and electron
loss, the electron density increases slightly at low dust den-
sitiessnd,33107 cm−3d or dust radiisad,100 nmd and de-
creases at high dust densities or radii. It is of interest to note
that the power absorbed by the dust grains can be quite high
(,20% of Pin) and can actually exceed that deposited at the
wall.

The global model proposed here allows one to predict the
averaged plasma parameters, such as the EDF, the electron
and ion number densities, the electron temperature, and the
dust charge. The study represents a significant improvement
on most existing investigations on dusty discharges[22,23],
where the Maxwellian energy distribution is invoked. We
have also taken into account the detailed power balance in
the plasma, including the power loss at the dust grains,
electron-neutral collisions, as well as the discharge wall. It
should be pointed out that while most earlier theories[1] for
dusty discharges can be applied to CCPs at lowsni
ø109 cm−3d densities, they are in general not applicable to
modern high-density industrial ICPs and microwave
plasmas.

In our calculations, the size and density of the dust grains
are that typically found in the laboratory experiments on
complex plasmas[1]. In reality, they are correlated and
should depend on the neutral gas pressure, temperature, as
well as the discharge volume. To self-consistently calculate
the evolution of the dust size and concentration, a much
more detailed formulation including the dust nucleation and
agglomeration processes[6,23] is required. However, at
present the latter processes are still not yet well understood.

In developing the global model, several simplifying as-
sumptions have been made. We now discuss in more detail
their limitations and implications. First, we have assumed
that the dust grains are uniformly distributed in the plasma
volume. This is close to the typical roughly uniform distri-
bution found in experiments where the dust grains are chemi-
cally formed[1,38] or externally injected[74]. In the experi-
ments the electron and ion densities are also nearly uniform
[39]. Thus, in calculating the EDF we can neglect the spatial
variation of the EDF if the external electric field is uniform.
On the other hand, in certain experiments dust grains some-
times accumulate near the boundary[75,76]. In this case the
dust density can be nonuniform and can lead to nonunifor-
mity of the electrons and ions[37]. Thus, the electron EDF
will also be nonuniform, and the present global model will
no longer be appropriate and a model taking into account
spatial effects must be introduced.

We have considered steady-state conditions assuming that
the dusts are fixed. In many rf argon-silane discharges this

may not be the case[1,6]. Nevertheless, the dust growth
process is very slow in comparison with the diffusion and
collision processes that determine the EDF. For example, ap-
proximately 5 seconds are required for growth of the dust
size from 50 nm to 60 nm[38]. Thus, dust growth can safely
be treated in a quasistationary manner.

Relatively large(exceeding a few tens of nm in radius)
dusts have been considered. Such a size falls within the va-
lidity of the OML theory[77]. Extension of our study to the
nanometers,1–10 nmd or lower domains would require
substantial upgrading of the existing dust-charging theories
to account for the plasma particle trapping by the wall po-
tential as well as other effects.

Finally, we have ignored the reactive chemistries and for-
mation of the dust grains, as well as the possible existence of
negatively charged ions. The chemistries are crucial in deter-
mining the composition of the complex plasma. The negative
ions can significantly affect the EDF since they can take up
much of the negative charge in the plasma system. On the
other hand, our model can be directly applied to plasmas
containing dust grains that are externally injected, as in many
laboratory experiments.

VI. CONCLUSION

A model for argon plasmas containing charged dusts has
been introduced. The model allows one to find the averaged
electron EDF, the electron and ion densities, the electron
temperature, as well as the average dust charge. Numerical
solutions based on the model demonstrate how a low-
pressure diffusion equilibrium of the complex plasma system
is self-consistently sustained by plasma particle sources and
sinks. The power lost to the dust grains in the complex
plasma is compared to that lost to electron-neutral collisions
and the wall. Variations of the input power, working gas
pressure, dust size, and density result in significant modifi-
cations in the electron energy distribution, electron tempera-
ture, electron and ion densities, as well as dust charge.

In spite of the many limitations, the model considered
here is relatively simple and accounts for the major particle
sources and sinks in a typical dusty plasma system. The
model describes the effects of the dust grains on the EDF, the
electron and ion densities, and the electron temperature. It
allows one to analyze power balance in the complex dis-
charge taking into account energy loss to the dust grains. Our
model can be easily extended to electronegative reactive
dusty plasmas[78,79].
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